CPI Electron Device Business - Tracking Radar Transponders

The ultra-miniature, solid-state, lightweight transponder is designed for use as a tracking radar enhancement device in airborne applications such as missiles, unmanned air vehicles or manned aircraft operating at instrumented ranges.

CPI EDB radar transponders are traditionally used by the manufacturers of target drones, missiles and test range operators where a common standard is desired. They provide a safe environment for equipment development trials and in-service training exercises. CPI EDB transponders provide a real-time solution that enhances any object's radar signature.

To learn more about CPI EDB's Tracking Radar Transponder capabilities, contact CPI EDB at ElectronDevices@cpi-edb.com or call +44 (0)20 8573 5555

The 258G ultra-miniature, solid-state lightweight transponder

FEATURES:

- Single antenna port for receive and transmit
- Transmit and receive frequencies preset within the 5.4 to 5.9 GHz band
- Synthesised transmit frequency source
- Typical transmitter peak power of 50 W
- Sensitive receiver, -65 dBm
- Preset single or double pulse code setting
- Displacement volume of 140 cm³ / 8.5 in³
- Typical weight of 280 g / 9.9 oz
- Factory set to operate from either 12 VDC or 28 VDC

Specification

Receiver

Туре	RF amplifier
Frequency range	5500 to 5800 MHz
Tuning	Preset to a specified frequency
v	via a three-port preselector filter
Duplexer	Circulator
Sensitivity	-60 dBm min. at 90 % reply
	-65 dBm typical
Max. signal input	+20 dBm (Pulse interrogation)
	+15 dBm CW
Stability	± 3 MHz
Bandwidth (3dB)	11 ± 4 MHz
Pulse width	0.3 to 1.0 μs
Interrogation mod	de Preset to either single-pulse
	or double-pulse
Double-pulse rand	ge 3.0 to 12.0 μs.
	Preset to a specified value
Double pulse acce	ept ± 100 ns
Double pulse reje	ct ± 250 ns
False triggers	5 Hz max

Spectral purity

spectral parity	
Amplitude	of 1st lobe ≤ -11 dB typical
	≤ -7 dB max
Depth of	the 1st null ≤ -20 dB typical
	≤ -9 dB max
Repetition rate	2500 Hz nom
Recovery time	< 25 μs
Delay range	2.0 To 15.0 μs
	Preset to a specified value
Delay variation	< 100 ns p to p
	(0 dBm to -50 dBm)
Jitter at -40 dBm	< 15 ns p to p

Power Requirements

Voltage	28 VDC range 20 - 32 VDC
Current at 28 V	60 mA max. 50 mA typical
(standby)	
Current at 28 V	100 mA max. 85 mA typical
(at 1 KHz)	
Current at 28 V	160 mA max. 130 mA typical
(at 2.5KHz)	

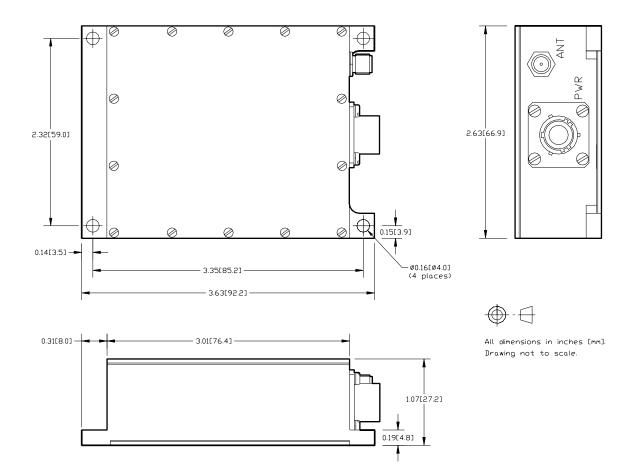
Transmitter

Туре	PLL Solid-state
Frequency range	5500 to 5800 MHz
Tuning	Preset to a specified frequency
Stability	± 1 MHz typical
	± 3 MHz max
Peak power	50 W typical
Pulse width	500 ns nominal

Mechanical

Displacement volume	140 cm ³ / 8.5 in ³
	(Transponder chassis)
Form	Rectangular
Overal dimensions	See page 4 for details
Weight	280 g / 9.9 oz nominal
`	

Connectors


Antenna	SMA female (OSM 208A)
Power	MS27476Y8D35P, standard

Environmental

Operating temperat	ture -40° C to $+80^{\circ}$ C
Storage temperatur	e -40° C to + 85° C
Altitude	Unlimited
Shock	100 g for 6 ms half sine,
	each direction on each axis
Vibration	100 to 1000 Hz, 16g rms
Humidity	100%, condensing
Acceleration	30 g applied
	along any axis for 1 minute
RFI/EMI Des	signed to meet MIL-STD-461B

CPI Electron Device Business TMD Technologies Division Swallowfield Way Hayes, Middlesex United Kingdom UB3 1DQ tel: +44 (0)20 8573 5555 email: ElectronDevices@cpi-edb.com web: www.cpi-edb.com For more detailed information, please refer to the corresponding technical description if one has been published, or contact CPI TMD. Specifications may change without notice as a result of additional data or product refinement. Please contact CPI TMD before using this information for system design.